
AEM ContextHub
The implementation of a website can require to leverage on some data kept in the browser and used to
inject content in a page.
The simplest example is a page from a personal are of a logged user, such as a profile page.
Trying to optimize the pages caching on a web server, it would require to render profile page initially
without any user data (so the same renderer html for all users) and then inject user data retrieving it
from a client context.

In AEM a client context can be managed with an OOTB feature called ContextHub.

More, the ContextHub is one of the options to leverage on for a targeting contents implementation, that
is provide a personalized user experience based on some information regarding the user itself.

What is the ContextHub
The ContextHub is a JavaScript framework provided out-of-the-box by AEM to manage the client
context, that is a set of data stored in the browser.

This framework is configurable in the AEM author instance as needed and is pretty extensible.

APIs are provided to access, manipulate and persistence data in the client context.

Data in client context have a structure based on stores.

Stores
A store logically includes:

• a complex object persisted in the client context containing all data related to a specific logical
entity (e.g., user profile, e-commerce cart, browser and device used, …);

• APIs to manage that object;
• storeType: the store ID;
• initial configuration in json format.

A store is implemented by a clientlib, whose categories property contains a value having this
convention: contexthub.store.<storeType>

E.g., contexthub.store.granite.profile, contexthub.store.contexthub.geolocation.

A store candidate is a clientlib available in AEM to be registered in a ContextHub configuration using its
storeType.
So, a ContextHub configuration only contains a subset of all store candidates, only those explicitly
associated with it.

A ContextHub configuration can be binded to a whole site or to a specific page.

When a page site is rendered, the ContextHub (and its configuration) is loaded basically including only a
JS, that populates all available stores.

Using ContextHub APIs, the website application code can access to a store data and use them.

The global object ContextHub is available in the DOM.
Given a store name, the store object can be retrieved using
ContextHub.getStore("<store name>") function.
E.g., var cartStore = ContextHub.getStore("cart")

Given a store object, data within the store can be retrieved using
storeObject.getItem(“<data path>”) function.
E.g., cartStore.getItem("entries/0/title")

Given a store object, data within the store can be manipulate using
storeObject.setItem(“<data path>”, <data value>) function.
E.g., cartStore.setItem("totalPrice”, "123€”)

More, each store can define event handler that are triggered when a specific event occurs.
E.g,ContextHub.eventing.on(ContextHub.Constants.EVENT_STORE_UPDATED + ":cart", this.refreshCart)

In the example below, the website application code accesses to cart store data to provide values to cart
items number in the header and details cart composition and subtotal in the right panel:

When a product is added in or removed from the cart, the cart status is automatically updated and
manager by event handlers registered to the cart store.

Existing store candidates
Out-of-the-box store candidates are:

• contexthub.geolocation: stores the user position coordinates and address using Google maps;
• contexthub.surferinfo: stores used browser and device;
• granite.emulators: stores data about emulators used on author side in preview mode;
• granite.profile: stores AEM user profile information (those contained at /home/users/we-

retail/<user>/profile path);
• contexthub.datetime: stores date, time and season calculated using user device system clock

and geolocation;

• contexthub.tagcloud: stores “tagcloud” provided in the input config or retrieved from meta tags
with the page;

• contexthub.generic-jsonp: stores data retrieved by a JSONP service;
• campaign.metadata: stores metadata related to a campaign;
• campaign.seeddata: stores seed related to a campaign;
• aem.pagedata: stores page data retrieved calling the current path with .pagedata.json;
• aem.segmentation: stores only resolved segments. This store is strongly dependent on which

other stores are enabled and on the nature of available segments. E.g., the winter/summer
segments from WeRetail demo website are resolved only if the geolocation store is also
enabled;

• aem.analyticsdata: actually, useless without a proper (unknown) configuration
• commerce.smartlists: store user wishlist retrieved calling the current path with

commerce.smartlists.json;
• commerce.relatedproducts: store products related to the current one (probably used only in

product pages) calling the current path with commerce.relatedproducts.json;
• commerce.abandonedproducts: store products which have special change of state (e.g., a visited

product that is added to cart);
• commerce.recentlyviewed: stores products whose pages have been visited;
• commerce.cart: stores all information related to ecommerce cart (items, total, promotions,

vouchers) and allowing to manipulate it when user interactions occur (add/remove to cart,
promotions or vouchers applied);

• commerce.orderhistory: store user previous orders calling the current path with commerce.
orderhistory.json;

According to the specific implementation of each store, related information can be persisted to:

• localStorage: default option, the object key is ContextHubPersistence;
• sessionStorage;
• cookie;
• window.name;
• JavaScript objects.

Custom store candidates
If out-of-the-box store candidates don’t provide a solution for a specific requirement, a custom one can
be created.

Simply define a new clientlib with a category named contexthub.store.<store type>.
Within the js script, define a function that represents the store candidate, inheriting from one of these
base stores:

• ContextHub.Store.PersistedStore
• ContextHub.Store.SessionStore
• ContextHub.Store.JSONPStore

• ContextHub.Store.PersistedJSONPStore

All of these anyway extends ContextHub.Store.Core store.
Eventually add or redefine some functions, manage store configuration extending the default one, add
event handlers.

Then register the store using its store type, assigning a priority in case multiple store candidates are
registered with the same store type.

Below is reported a pseudocode for a store candidate definition:

(function($, window) {
 var defaultConfig = { ... };

 myStoreCandidate = function(name, config){
 this.config = $.extend(true, {}, defaultConfig, config);
 this.init(name, this.config);
 …
 };

 ContextHub.Utils.inheritance.inherit(myStoreCandidate,ContextHub.Store.PersistedStore);
 ContextHub.Utils.storeCandidates.registerStoreCandidate(myStoreCandidate, '<store type>', 0);
}(ContextHubJQ, this));

ContextHub toolbar
AEM provides a toolbar for editors to allow data stores display and manipulation.
This is useful to preview a content based on specific client context.
The toolbar is fully customizable and configurable.

The image below shows a toolbar example:

1. Changing view mode in Preview;
2. an icon appears in the upper bar; clicking on it the ContextHub toolbar is showed. It includes a

set of UI Modes and UI Modules;
3. each UI mode is identified by an icon; clicking on it, the UI modules included in the current UI

mode are showed;
4. Each UI module displays data related to a ContextHub store. Some of them allow also to

manipulate the data to test a specific behavior of the website.

The toolbar is totally rendered in JS.

A UI module is implemented by a clientlib, whose categories property contains a value having this
convention: contexthub.module.<moduleType>

E.g., contexthub.module.granite.profile, contexthub.module.contexthub.location.

Such as stores, only modules registered in the ContextHub configuration related to a site page are
available in that page.

Modules used ContextHub APIs to access data contained into one or more ContextHub stores to
populate the widget in the toolbar and to persist manipulated data into the ContextHub stores again.

In the example below is showed the cart UI module. It allows users to add products to cart using a
picker, rather than using the specific website UX, and to persist the cart data in the related ContextHub
store.
More, the cart in the right panel is updated automatically, because of changing on cart ContextHub
store triggers some event handlers.

Existing UI Modules
Out-of-the-box UI Modules are:

• commerce.recentlyviewed and commerce.abandonedproducts (same clientlib): displays existing
and allows to add products (using a product picker) respectively in the recentlyviewed and in
abandonedproducts ContextHub stores;

• contexthub.tagcloud: doesn’t work in AEM 6.5 (throws Uncaught ReferenceError: Class is not
defined);

• contexthub.device: should displays the current emulator, but seems not to work well;
• contexthub.location: if the browser geolocation is enabled, displays user latitude, longitude, city,

country, country code, postal code, region, street number and the google map. It allows also to
set a fake geolocation choosing among a predefined list of locations;

• contexthub.datetime: doesn’t work in AEM 6.5 (throws Uncaught ReferenceError: Class is not
defined);

• contexthub.browserinfo: display browser and operating system version;
• contexthub.season: doesn’t work in AEM 6.5 (throws Uncaught ReferenceError: Class is not

defined);
• campaign.seeddata: displays campaign seed;
• commerce.smartlists: displays existing wishlists and all items contained in each of them;
• commerce.relatedproducts: displays recommended products related to the current one

(probably used only in product pages);
• commerce.cart: displays items currently added to cart and allows to add new one using product

picker;
• commerce.promotions: displays current applied promotions and allows to add new one using a

campaign offer picker;
• commerce.vouchers: displays current applied vouchers and allows to add new one using a

textfield but seems not to work very well;
• commerce.orderhistory: displays user previous orders;
• granite.resolvedsegments: displays only available campaign segments for the current page that

satisfy all their rules agains the current client context;
• granite.profile: displays all user information contained in the profile store and allows to

impersonate others users;
• granite.demographic: doesn’t work in AEM 6.5 (throws Uncaught ReferenceError: Class is not

defined);
• contexthub.screen-orientation: displays device screen orientation (landscape or portrait);
• contexthub.base: generic module that needs proper init configuration, can be used to displays

specific data retrieved by specific store.

However, all not working UI Modules are neither integrated into We.Retail demo website.

Custom UI Modules
If out-of-the-box UI Modules don’t provide a solution for a specific requirement, a custom one can be
created.

Simply define a new clientlib with a category named contexthub.module.<module type>.
Within the js script, define a function that represents the module renderer, inheriting from
ContextHub.UI.BaseModuleRenderer.

Eventually add or redefine some functions, manage module configuration extending the default one.

Then register the module using its module type.

Below is reported a pseudocode for a module definition:

(function($, window) {
 myModuleRenderer = function(){};

 ContextHub.Utils.inheritance.inherit(myModuleRenderer, ContextHub.UI.BaseModuleRenderer);

 myModuleRenderer.prototype.defaultConfig = { … };

 myModuleRenderer.prototype. onFullscreenClicked = function(module) {
 var config = $.extend({}, this.defaultConfig, module.config);
 …
 };
 myModuleRenderer.prototype.onListItemClicked = function(module, position, data) {…};
 myModuleRenderer.prototype. getPopoverContent = function(module, popoverVariant) {…};

 ContextHub.UI.ModuleRenderer('<module type>', new myModuleRenderer ());
}(ContextHubJQ, this));

How to setup the ContextHub
There are some steps to follow if you want to add the ContextHub feature to your project.
First of all, we can distinguish between developments and configurations.

Developments
According to your project requirements, could be needed to implement custom store candidates and UI
Modules.
This implies to create specific clientlibs whose categories must have a proper naming convention with a
fixed prefix and a different suffix for each store and module (see related sections above).
You can include the clientlibs in your project such as any other clientlib.

Then you must include js framework in you rendering scripts so that the inclusion occurs in html head
tag. In HTL scripts, the following can be used:

<sly data-sly-resource="${'contexthub' @ resourceType='granite/contexthub/components/contexthub'}"/>

If you have to enable the ContextHub in the whole site and for example you’re inheriting page
component from Core component one, a good point of inclusion is the customheaderlibs.html.

A rendered output sample is showed in the image below

Basically, it contains only some configurations and the contextHub framework inclusion.

No other development steps are required for a basic integration.

Configurations
Next step is to create a ContextHub Configuration, including stores, UI Modes, UI Modules.

ContextHub configurations are located in the repository at:

• /libs/settings/cloudsettings/legacy: OOTB configuration ready to use, including the most OOTB
stores and UI Modules (grouped into 3 UI Modes: persona, device, commerce);

• /conf/global/settings/cloudsettings: location used to share configuration among different
projects;

• /conf/<tenant>/settings/cloudsettings: configuration related to a tenant.

Anyway, the configuration defined in a tenant conf can be used by any page of any website (with proper
ACL read privileges settings).
This is because the binding between the ContextHub configuration and the page is made using page
properties. Below images show how the binding works:

More, the binding it automatically inherited from upper-level pages if not specifically set in the current
page, so it’s enough to set it in the homepage to be valid for the whole website.

The contextHub configuration has the structure showed in the image below:

1. First level: stores or UI modes;
2. Second level: UI modules (only with UI modes as parent)

Configuration under a specific tenant can be made editorially in the author instance.

Configuration using Touch-UI
For Touch-UI navigation menu, go to Tools -> Sites -> ContextHub, such as showed below:

Click on a tenant (if you want to create a new tenant go to Tools -> General -> Browser configuration)

Create a configuration container, using only lowercase letters, numbers and minus characters otherwise
net step could not work:

Then click on the configuration container just created and create a ContextHub configuration.

Possible settings are:

• Debug: if checked the contextHub js framework will not be minified;
• Disable ContextHub: if checked this configuration will not be avaiable to be binded in the page

properties.

Clicking on the contextHub configuration just created is possible to create ContextHub Store
configurations and UI Modes.

ContextHub Store configuration
The wizard for ContextHub Store configuration creation contains:

• Title: simple label

• Name: used as store key in the persistence object. E.g., the pagedata key in the image below

• Store type: used in for matching with clientlibs categories property values (see naming

conventions for stores clientlibs). The store is registered using this value in the ContextHub store
candidates register;

• Required: if checked and no matching clientlib are found for the defined store type field, an
error is printed in the browser console but the ContextHub works anyway (excluding this store);

• Enabled: if checked, this store configuration is considered in the ContextHub configuration
javascript code creation;

• Detail Configuration (JSON): a json configuration used to initialize the store object. Each store
candidate has a specific configuration structure due to his nature. E.g., the granite.profile store
candidate has a configuration such as:

UI Mode configuration
The wizard for UI Mode configuration creation contains:

• Title: simple label;
• Name: name of the node (unused);
• Mode Icon: coral css class identifiying a coral icon to show in the toolbar. Must have pattern

coral-Icon--<name> (e.g., coral-Icon--user);
• Enabled: if checked, the icon is showed in the ContextHub toolbar.

UI Modules configuration
Clicking on a UI mode configuration is possible to create a UI Modules configuration

The wizard for UI Module configuration creation contains:

• Title: simple label;
• Name: node of the node (unused);
• Module type: used in for matching with clientlibs categories property values (see naming

conventions for UI modules clientlibs). The module is registered using this value in the
ContextHub modules register;

• Enabled: if checked, the widget related to this module is showed in the ContextHub toolbar
(when the containing UI Mode is enabled).

ContextHub configuration
Once some stores, UI Modes and UI Modules have been defined, it’s possible to check how these
settings are used to create two JSON configurations used by ContextHub JavaScript framework.
These JSON are visible in the ContextHub Configuration properties accessible clicking on Edit Selected
Element button:

Configurations are:

• Kernel Config: contains stores configurations;
• UI Config: contains UI Modes and UI Modules configurations.

They are not modifiable because are autogenerated.

Targeted Content
ContextHub can be used as engine to provide a user personalized experience, such as show different
contents within a component.

Users are divided into categories called segments.
A user belongs to a segment if its client context satisfies all traits included in the segment definition.
Criteria are can be collected in several ways: user personal information and preference, user history,
navigation, a survey, ...
A user can belong to zero, one or more segments, called resolved segments.
The process regarding creation of segments is called segmentation.

An activity is a marketing initiative regarding a subset of segments.
A component to be targeted must be associated to an activity.
Then a specific content can be binded to a specific segment.

When a user belonging to a segment navigates to a page with a targeted component, the content
associated to the user segment is showed.

It’s required to add segmentation ContextHub store candidate to the ContextHub configuration in order
to make content targeting works.

It’s also useful to add segmentation UI Module to provide the ContextHub toolbar a specific widget that
shows resolved segments, as showed below

Use case

An ecommerce website has in its catalogue the following products taxonomy: male, female, unisex.
The website users are segmented in male, female and anonymous.
The homepage hero slider can contain references to several products, usually most wanted products
(independently from the taxonomy).
Marketing people wants to create an activity associated with the hero slider and involving male and
female segments so that:

• for male segment the hero slider only contains references to male and unisex products;
• for female segment the hero slider only contains references to female and unisex products;
• otherwise default content is showed.

Audiences
Segments are located at path /conf/<tenant>/settings/wcm/segments and they can be configured
editorially from Navigation -> Personalization -> Audiences:

Clicking on a tenant

is then possible to create a ContextHub Segment

The wizard has only two fields:

• Title: simple label;
• Boost: numeric value to establish a ranking between segments so that a user that resolves more

segments is associated with the segment with higher boost value.

Accessing to segment just created is possible to define a complex rule combining constraint with OR and
AND operators.
A constraint can be:

• Comparison between a store value and a primitive value;
• Comparison between a store value and another store value;
• A script reference;
• A segment reference, that is including a rule defined in another segment;
• Comparison between a store value and a script reference;
• Comparison between a store value and a segment reference;
• Comparison between a script reference and a segment reference.

Custom constraints can be developed as well.

Image above shows segment Summer-Female-over-30 defined as combination via AND of following
referenced segments:

• Summer: uses geolocation store and season store;
• Female: uses gender from profile store;
• Over-30: uses age from profile store

The green rules are those satisfied by current client context, so the current segment is resolved by
current client context only if all rules are green.

Finally, segments defined in a tenant must be binded to a site or single page (such as already showed
with ContextHub Configuration) in the following way:

Activities
Activities are located at path /content/campaigns/<tenant>/master and they can be configured
editorially from Navigation -> Personalization -> Activities:

Click on a brand

Then is possible to create an activity

The wizard for activity creation contains:

• Title: simple label;
• Name: node name (unused);
• Targeting Engine: choose ContextHub (AEM);
• Objective: description for the activity;
• Adding one or more Experience, that is kind of renaming of segments defined in Audiencies

section.

Be aware that when you add a new Experience, the showed list contains segments from all
tenant and legacy configurations;

• Duration – start: specifies since when the activity is valid.
o When activated: on publish, as far as the targeted content page is activated;
o Specified Date and Time: starting from a timestamp chosen with a date picker.

• Duration – end: specifies to when the activity is valid.
o When deactivated: on publish, as far as the targeted content page is deactivated;
o Specified Date and Time: until a timestamp chosen with a date picker.

• Priority: if more activities are applied to the same components, only the activity with higher
priority is considered.

Targeting configuration
Once an activity with some segments is created, a component can be targeted.

1. Select Targeting view mode within the page editor;
2. Select the Brand;
3. Select the Activity;
4. Click on Start Targeting button;
5. Choose the component to be targeted and click on Target button;
6. Chose a segment in the Audiences right panel;
7. Once clicked on a segment, the component is ready to be personalized for the selected

segment. Insert new contents in the component (e.g., if the component is an hero image, set
another image);

8. Click on Target component setting button;
9. Select ContextHub in the Engine field;
10. Select strategy to apply when multiple segments are resolved:

• First candidate: upper experience in the list defined in the activity;
• Last candidate: lower experience in the list defined in the activity;
• Random

Repeat steps 6 and 7 for each segment in the activity.

Targeted contents are located at path
/content/campaigns/<tenant>/master/<activity>/<segment>/<component>

Targeting rendering
The following are the steps for a targeting rendering:

1. When a page containing a targeted component is rendered, the targeted component is initially
hided with visibility:hidden css rule, that is a blank block is showed, although the default content
is loaded in the source code;

2. The Segment Engine retrieves all resolved segments but only the one with higher boost is
considered;

3. For a targeted component with multiple activities, only the one with higher priority is
considered;

4. If there is a matching between the considered user segment and a segment related to the
considered activity, the content related to that activity segment is retrieved with an ajax call and
replaces the default one;

5. The component is showed,

A side effect occurs during this process that is called flickering, caused because the targeted content is
injected client side after the server side rendering.

The image below shows this effect

ContextHub js framework anatomy
The JavaScript framework is actually are dynamically generated scripts, because it includes Kernel Config
and UI Config (see ContextHub Configuration section) that are generated automatically based on
editorial settings.

The bundle Adobe Granite ContextHub Commons (com.adobe.granite.contexthub.commons) manages
the scripts creations.

Actually 2 scripts are included

• One to manage ContextHub stores;
• On to manage ContextHub toolbar (only with wcmmode.Disabled).

ContextHub store js (author and publish)
First of all, a script such as the one below is included as inline js:

It includes configuration settings defined in the page properties (such as ContextHub configuration path
and audiences configuration path).

Then a js script is included, having URL with pattern /etc/cloudsettings.kernel.html/<contextHub
configuration path>
E.g., /etc/cloudsettings.kernel.htm /conf/we-retail/settings/cloudsettings/contextHub-
container/contexthub

The JS is structured in this way:

• Kernel Config containing stores configurations, retrievable at <contextHub configuration
path>.config.kernel.js (e.g., /conf/we-retail/settings/cloudsettings/contextHub-
container/contexthub.config.kernel.js)

• contexthub.utils clientlib (/libs/granite/contexthub/code/kernel/utils) and its dependencies:
o contexthub.jquery (/libs/granite/contexthub/dependencies/jquery)
o contexthub.shared (/libs/granite/contexthub/code/kernel/shared) and its dependencies

 contexthub.polyfills (/libs/granite/contexthub/code/kernel/polyfills)
 contexthub.constants (/libs/granite/contexthub/code/kernel/constants)

• the core contexthub.kernel clientlib (/libs/granite/contexthub/code/kernel/core/initialization)
and its dependency:

o contexthub.config.override (/libs/granite/contexthub/code/kernel/overrides/kernel-
config)

• contexthub.generic-stores clientlib (/libs/granite/contexthub/code/kernel/generic-stores):
contains base stores to be extended (see Custom store candidates section);

• contexthub.segment-engine clientlib (/libs/cq/contexthub/code/kernel/segment-engine)
• contexthub.segment-engine.operators clientlib (/libs/cq/contexthub/code/kernel/segment-

engine/comparison-operators): contains OOTB segment operators constraints definition
• contexthub.segment-engine.operators.custom clientlib: placeholder for custom segment

operators constraints definition inclusion;
• contexthub.segment-engine.scripts clientlib (/libs/cq/contexthub/code/kernel/segment-

engine/comparison-scripts): contains OOTB segment script constraints definition;
• contexthub.segment-engine.scripts.custom clientlib: placeholder for custom segment script

constraints definition;
• contexthub.segment-engine.page-interaction clientlib

(/libs/cq/contexthub/code/kernel/segment-engine/page-interaction)

• For each enabled store, inclusion of clientlib containing the implementation (e.g., for
granite.profile store the clientlib at /libs/granite/contexthub/components/stores/profile)

ContextHub UI Modes and UI Modules js (only author)
Again, an inline script is included at first, containing some application code to inject the ContextHub
toolbar.

Then a js script is included, having URL with pattern /etc/cloudsettings.ui.html/<contextHub
configuration path>
E.g., /etc/cloudsettings.ui.html/conf/we-retail/settings/cloudsettings/contextHub-container/contexthub

The JS is structured in this way:

• UI Config containing stores configurations, retrievable at <contextHub configuration
path>.config.ui.js (e.g., /conf/we-retail/settings/cloudsettings/contextHub-
container/contexthub.config.ui.js)

• the core Contexthub.ui clientlib (/libs/granite/contexthub/code/ui/container) and its
dependencies:

o contexthub.jquery (/libs/granite/contexthub/dependencies/jquery)
o contexthub.handlebars4 (/libs/granite/contexthub/dependencies/handlebars)

• For each enabled UI Module, inclusion of clientlib containing the implementation (e.g., for
granite.profile store the clientlib at /libs/granite/contexthub/components/modules/profile)

Authors
Aldo Caruso

Bibliography
Adobe documentation about developing ContextHub
Adobe documentation about authoring ContextHub
Tutorial about enabling ContextHub in a project
Tutorial about audiences and activities management
Tutorial about segment engine

https://experienceleague.adobe.com/docs/experience-manager-65/developing/personlization/contexthub.html?lang=en
https://experienceleague.adobe.com/docs/experience-manager-65/developing/personlization/contexthub.html?lang=en
https://experienceleague.adobe.com/docs/experience-manager-65/authoring/personalization/ch-previewing.html?lang=en#personalization
https://experienceleague.adobe.com/docs/experience-manager-65/authoring/personalization/ch-previewing.html?lang=en#personalization
https://experienceleague.adobe.com/docs/experience-manager-learn/sites/personalization/context-hub-technical-video-setup.html?lang=en
https://experienceleague.adobe.com/docs/experience-manager-learn/sites/personalization/context-hub-technical-video-setup.html?lang=en
http://www.sgaemsolutions.com/2018/12/personalization-using-contexthub-in-aem.html
http://www.sgaemsolutions.com/2018/12/personalization-using-contexthub-in-aem.html
http://www.sgaemsolutions.com/2018/12/personalization-using-contexthub-in-aem_8.html

	AEM ContextHub
	What is the ContextHub
	Stores
	Existing store candidates
	Custom store candidates

	ContextHub toolbar
	Existing UI Modules
	Custom UI Modules

	How to setup the ContextHub
	Developments
	Configurations
	Configuration using Touch-UI
	ContextHub Store configuration
	UI Mode configuration
	UI Modules configuration

	ContextHub configuration

	Targeted Content
	Audiences
	Activities
	Targeting configuration
	Targeting rendering

	ContextHub js framework anatomy
	ContextHub store js (author and publish)
	ContextHub UI Modes and UI Modules js (only author)

	Authors
	Bibliography

